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1. As was pointed out by Shercliff [l 1, if the external magnetic 
field Ho is uniform, and the velocity field and induced electric and 
magnetic fields do not depend on the coordinate z measured along the 
axis of the tube, there exists a solution of the equations of steady 
motion of a conducting viscous incompressible fluid along a tube such 
that 

v = vi,, H = H" + H,i, (1.1) 

where 

E=&grad H,x i,+-:Hxv, j=ggradH,xi, (1.2) 

Here E and j are the electric field and current density in the fluid, 
(T its conductivity and p its magnetic permeability. 

We choose the r-axis in the direction of the field Ho. Assuming that 
- cYp/dz = P = const, and supposing that external volume forces are 

absent, we obtain for Hz and v the following equations: 

i 

Here 7 is the coefficient of viscosity of the fluid. 
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The boundary conditions for HZ on the walls (contour1 S of the tube 
(assuming them fixed) are written as: 

on the nonconducting parts of the wall 

i3H,/dS=O on S (1.5) 

on the ideally conducting parts (where n is the normal to the wall) 

dH, I dn = 0 s on s (1.6) 
To these is clearly added the condition 

r=O on s (1.7) 

The case of nonconducting walls was considered in 11 I, and the case 
of ideally conducting walls in 12 1. In both cases the solution is re- 
presented by trigonometric series obtained by use of the method of 
particular solutions. It is possible in the same way to solve the prob- 
lem of a rectangular tube whose walls perpendicular to the external 
magnetic field are ideally conducting, and those parallel to it are non- 
conducting*. It appears much more difficult to consider the question for 
a tube with ideally conducting walls parallel to Ho and nonconducting 
ones perpendicular to Ho. Since an exact solution of this problem does 
not, to the best of our knowledge, exist in the literature at the pre- 
sent time, we give here some considerations related to finding such a 
solution and its investigation. In particular, the problem is reduced to 
an integral equation of the first kind, which is easily solved by 
numerical means for. small and moderate values of the Hartmann number, 
and admits of asymptotic investigation in the case when this number is 
large. 

l It should be noted that such a form of the solution appears to be 
very dis~vantageous in the case of large values of the Hartmann 
number, because the convergence of the series deteriorates rapidly 
as that number increases. The situation here is analogous to that 
occurring In the theory of the dtffractien of waves by a body of 
finite dimensions, where the convergence of the series obtained by 
the method of particular solutions rapidly deteriorates with increase 
of the ratio of a characteristic dimension of the body to the wave- 
length (for a cylinder, sphere, etc.). In the present case, as in 
that of diffraction. one may attempt to find a practically useful 
solution by summing the resulting badly convergent series, turning it 
into a complex integral and then transforming this by one meaus or 
another to obtain a new form of the solution that is useful even for 
large values of the Hartmann number. 
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2. We proceed to the solution of the stated problem. Choosing the x, 

y-axes as shown in Fig. 1, setting OA = 1 = Za, 
and OB = d, and denoting by I the total current 61 

flowing in through the ideally conducting wall 8 c 

OA and flowing out through BC (per unit axial 
length of the tube), we obtain the following 
boundary conditions for the field HZ: LL 0 A 

Pig. 1. 

B*=2nr/c at xLT=o, H,=-~z~!c at x=;i 

tYH,/@=O at ~~0, aiY,/ay=o at y=d 

Furthermore 

~IXZO = 0, 21 IX.l = 0, v IU--0 = 0, r iVZd = 0 

Introducing the functions 

and setting 

we obtain from (1.3) and (1.4) the equations 

nu+2’1$= 0, nv+27+0 

with the boundary conditions on the walls OB and AC 

QED=-% &=‘_a; q)%_*=o7 vlx=I = 0 

For the combinations p = u + 2t and q = u - u we find 

Ap + 27 dp / dx = 0, Aq - 2ydq I dx = 0 

P lx+ = - a2 4 Is=o = - a, P Id 

We set finally 

p = e-uw--a)$, q =: eYN-4 

and introduce the unknown stream function 

(2-l) 
(2.2) 

(2.3) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.ll) 
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Then for S and t we obtain the equations 

AS - r2 S = 0, At - 7% = 0 (2.12) 

with boundary conditions 

S /r_-O = - ae-ya, S [r_I = aP, 
C3S 

F g=o I 
= ey P-4 f. (2) 

as - 
@i g=d i 

zzz /$f w-4 fd (z) (2.13) 

t jx_=o = - aP, t IxEI = ae-+, 
at 

ay fl=o i 
= - e--Y W--a) fn (s) 

at - 
i ‘.Y g=d 

= - e-w --a) fd (2) (2.14) 

For the determination of the functions S and t under the boundary 
conditions (2.13) and (2.14) one may use the Green’s function G(e, 7, 
z, y) for the rectangular region under consideration, given by the 
equation 

2JrG (E, q, X1 y) = i 5 (R, [r ~(.%?I - E)” + (%I - r)“l + 
m=--oo n= -_co 

+ K, tr V(%% - E)” + ty, - q)21 - KJ IT V(%’ - 8” + (Yn - V1 - 

- J4 [r V(%n’ - E)” i- (Yn’ - r1)21) (2.15) 

where K,(z) is the Macdonald function, and* 

x,=2ml + 5, 2,’ = 2ml- x (m=O, fl, f2,. ,.) 

yn=2nd+y, y,‘=2nd-y (n=O, ff, 52.. .). (2.16) 

and satisfying Equation (2.12) and boundary. conditions of the form** 

* We note that 

I 
z-m=- VI, z “:(m-I) -z=-(~~--z), y&-yY,, Y:(,,_~, - d = - (y,.--4. 

** It is easily obtained by the method of images from the basic solution 
Ku(yR) of Equation (2.12), where R = \/ [ (x - t>’ + (y - q)*l is the 
distance from the fixed point ([, ‘1) to the variable point (x, y}. 
We note that for small yl and yd Expression (2.15) for the function 

W$T, ‘I* x, y) is advantageously transformed for practical use into 
another form on which we will not dwell here. 
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By use of Green’s formula we obtain the following expressions: 

8 (5, y> = \ fG (6, d, 3, Y) fd (i) - G (E, 0, x, y) f. (5)) ey’(e-+ dS - 
5 

d 

- a s (GE’ (1, q, x, y) eya-t- CC’ (0, q, 2, y) e-Y”)dq (2.18) 
0 

Consequently 

p (5, y) = e--u@-+ S (z, y) = 

= \ IG GL& 5, y) fd (E) - G (E, 0, I, y) f. (E)> ey+(E---3c) dE - 

0 
d 

q (z, y) = ev(s--a) t (x, y) = (2.19) 

-a\ (GE’ (I, q, x, y) e-+-x) + Cc’ (0, q, x, y) eyx) dr 
0 

2, ($7 Y) =. $ (P - s> = (2.20) 

= { IG 6, CL’, x, Y) fd (8) - G (E, 0, x, y) fo (5)) wsh y (x - E) d!, - 

ne last equation can be greatly simplified, because the integrals 
with respect to 9 appearing in its right-hand side do not, as will 
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appear imediately, depend upon y and d, and are thus functions only of 
z. Consequently we obtain according to (2.151, for example 

d KI (T r/z,” + (Y_,’ - wi 
+ 5 d KI cr 1/x,” + (Y,- r1J2) 

0 
6x,2 + (Y-,’ - 1712 

drl]-zrnl i [\ 
n=---co 0 

v 

%‘2 + (Y, - w 
dr) $I 

(2.22) 

Setting in the first integral on the right yn - 17 = 2nd + y - q = t, 
and in the second y_y-,‘-l = -(2nd + y + ~1 = - t and combining the re- 
sulting integrals with respect to t, we find 

03 d Kl (T vq + (Y, - ?j2) 
2 cs d KI (T f+n* + (Y_,’ - rlj2) 

dq + s n=--ca 0 
“I/%” + (Yn - w 0 1/x$ + (Y-d - rlP 

dll] = 
m 

= 2J s 2nd+y+d KI (T vxm2 + t2f dt = 

(2.23) 
?I=--m Pnd+y-d 

V’Q-p 
&=~~ 

m 

Here we have used the known formula 

O” Kl (y I/as + t2) dt s ne--y Ial 

0 
Jfaii ==-qqq (2.24) 

valid for arbitrary real values of a < 0. 

Substituting into (2.22) the result obtained and its analog corre- 
sponding to the replacement of xa by xa’ in Equation (2.231, we arrive 
at the relation 

(2.25) 

where it is taken into account that x6’ = - xi = -(2mZ + x). Analogously 
we find 

d 

s 
~(~,~,~,~)d~=-~ (2.26) 

0 
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Substitution of the results obtained into (2.20) and (2.21) gives 

7~ (~2 y) = \ G (5, d 7 $7 rdfd (%) -G (E,Ot 2, Y) f, (E)3 cash T @ - E) dE + 
b 

_t_ +w;p; (2 - 4 (2.27) 

--a 
sinhy (1 - 2x) 

aillilT 
(2.28) 

The condition v(x, 0) = V(X, d) = 0 is now reduced to the form 

I 

‘i 
CG (E, d, x,0) fd (8 -G (E, 0,x, 0) f, (81 co& r (5 - %) dE = 

i 

~ _ x-p4 Y (l- “)rinhyz 
sinhyl 

(2.30) 

From (2.15) it follows immediately that 

G (E, d, 2, d) = G (E, 0, 2, (3, G (E, d, z, 0) = G (E, 0, 5, 4 

merefore, subtracting (2.29) from (2.301, we obtain 

\ (G (E, 0,x, 0) - G (E, 0,x, 41 [fd (E) + f, (E)I cash y (J: - E) d$ = 0 
10 

(0 <I < 0 (2.31) 

Thus it must be true that* 

fd (El = -fo (8 (2.32) 

and Equations (2.29) and (2.30) are reduced to one, namely 
1 

s (G (E, 4 x,0> + G (E, 0,x, 0)) f, (r;) cash y (x - E) dg = 2tiU7+‘&“$‘- 4 
0 (2.33) 

* This follows immediately from the symmetry character of the solution 
being sought. 
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‘lhis is an integral equation for the function f,,(E). If the function 

fa([> is determined from this equation, then from it by means of E&a- 
tions (2.27), (2.28) and (2.32) u and v can be determined, that is, the 

complete solution of the problem be found. 

For this, Equations (2.27) and (2.28) acquire the form 

u = i [G (E, 6 5, y) + G (E, 0, x, ~11 f, (t)sinh T (x - E) dt - a”“;: ;2z’ (2.34) 
0 
1 

(2.35) 

2, zc 
s 

[G (E, d, r, Y) + G (ET 6, 5, y)] f. (E) coshr (5 - E) dE + 2~dnhrz;~;;’ --2) 

0 

If LWJY 1 y= (J = 0, only the terms outside the integrals remain i,n 
the right-hand sides of Equations (2.34) and (2.35), and these equations 
are the (known) exact solution of the one-dimensional problem for Equa- 
tions (2.6) and (2.7), obtained under the assumption that the entire 
process depends upon x and not upon y. In other words, these terms give 
the exact solution of the problem of the corresponding flow of fluid not 
in a tube of rectangular cross-section but between two parallel plates 
of infinite extent in the direction of the y-axis. 

We note also that for a = 0 the right-hand side of Equation (2.33) 
vanishes, so that f,,(S) = 0, and consequently u = v = 0 according to 
(2.34) and (2.35). From Equation (2.4) it then follows that 

H, = ~(a-~) (2.36) 

and from the condition a = 0 it follows that P/Hop= I/2ac, so that 

Hence for the current density j we obtain the expression 

j=-&gradH,xi,=--ii, 

(2.37) 

(2.38) 

that is, the current flows parallel to the y-axis, with its density con- 
stant in the r-direction. Thus we have a static regime, the fluid being 
at rest, so that the variation of pressure is balanced bv the electro- 
magnetic forces exerted on the current j by the field 8”. 

From Equation (2.33) it is evident that 

fo (E) = a@ (E) (2.39) 

where the function (D(5) does not depend upon a. 

Equations of an analogous type are obtained, according to (2.34) and 
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(2.351, for v and u. For Q(t) we obtain the equation 

s {G (E, 0,x,0) + G (E, d, IC, 0)) dD (E) cash r (x: - E) dg = 2dnhT’;‘(1 ---I (2.40) 
0 

From Expression (2.15) for G([, 7, x, y> it is evident, in particu- 
lar, that for yd >> 1 the term G(E, d, x, 0) in the left-hand side of 
Equation (2.40) is very small in comparison with G(c, 0, x, 0). 

Since this term reflects the effect of finite dimension of the tube 
section in the direction of the y-axis upon the distribution of the 

function fa(f$) = C av/dy 1 yz o along the wall y = 0, that is, the effect 
upon this distribution of the wall at y = d, it follows from what has 
been said that for yd >> 1 this influence can be neglected, and with 
greater accuracy the greater is the parameter yd. For d = (YJ, which cor- 
responds to the case of a section in the form of a half-strip rather 
than a rectangle, it disappears completely. Equation (2.40) then takes 
the form 

s B CL 0,5,0> ‘p (5) co& ?’ (x - g) dg = 2ai*yx~;l(1 -‘I 
0 

(2.41) 

where #i(c) is the corresponding solution and g(e, 0, x, 0) the Green’s 
function for the half-strip, obtained from (2.15) by passing to the 
limiting case d = 00, and equal to 

g(MXJ)=& .jj {K,(r1/(~~--)2f(y-rl)?)1- 
Wl=---m 

+ K, (r I/ (% -V+ (Y + rt)“) - li’, (T V(k - Q2 + (Y - rl)?) - 

- K, tr v-(&r%’ - EJ” + IY + r112)l (2.42) 

since in (2.15) all terms with n f 0 vanish. 

Introducing the dimensionless variables z = x/l, 5 = [/I and setting 
yl = M and Z$ftl) = G(z), we obtain finally* 

1 * s g (K, o,zz, 0) q (5) co& 116 (2 - 5) dc = 2safiz;;: li - ‘) (2.43) 

where 
0 

* There is clearly no danger of confusing this t = x/l with the Co- 
ordinate z in the direction of the axis of the tube. 
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g (~5, o, zz, o) = ; [K, (a 12~2 + z - 5 1) -K, (M 12~2 - .z - 5 IN (2.44) 
VI=-CC 

‘Ihis is a one-parameter equation for the unknown function $([I, M 
being the Hartmann number. 

In what follows, certain consequences resulting from this equation 
are considered. 

3. For small and moderate values of M, Eguation (2.43) can be solved 
numerically, reducing it to a system of coupled linear equations, where 
one must take account of the fact* that NO) = fll> = 0. For large 
values of its argument the function K*(U) is asymptotically equal to 
e - u d(R/2u) ; consequently in the case of large values of Mthe series 
(2.44) for the function g( I [, 0, Zz, 0) converges very rapidly. For 
sufficiently large M, Equation (2.44) may he limited to three terms, 
namely 

(3.1) 

g (K10, lz, 0) -+#Wl 2 - 5 1) - &I W,(Z + 511 - K* IM (2 - 2 - 5)l) 

according to which Eguation (2.43) takes the following form: 

In numerical solution of this equation account must be taken of the 
fact that its kernel becomes infinite at 4 = z. We divide the full 
interval of integration (0, 1) into sufficiently small subintervals (Ci, 
ri+ 1) and take advantage of the approximate equality 

(3.2) 

where tie is some average intermediate value of C, for example 

(3.3) 

* Because f, ([I = E&/c?y 1 y= o vanishes at 6 = 0 and ( = 1, the velo- 
tits v is equal to zero on these walls. 
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Cp = 1/2(5i + Ci+ 1 1. Here it is essential that the integral appearing 
in this formula can be found as an indefinite one in terms of known 
functions, if use is made of the formula* 

s eft & (t) dt = te+’ [K, (t) dI ~~ (t) 1 (3.4) 

and taking into account Expression (3.1) for g(Z[, 0, Zz, 0) and the 
fact that** 

4. We consider the asymptotic form of Equation (2.43) obtained for 
IV-, 00. In so doing we proceed from the fact that for M+ M over almost 
all of the interval of integration the asymptotic equality is valid 

&,(n/rIz-$1) cosh~+&+” &_- 

and analogously 

(4.1) 

.hl, [?ii (z + j)] cash 1w (z - 5) ;=z= $v’r 2Mf ,” +Q ieTfC QVZ e -* 
,:I; 1;; (4.2) 

li”, [iI1 ($--z-r;)] cash df (z - ~)~~~~~~~~_~~~~~~~~~ :;; :=$4.3) 

where (4.2) is valid under the condition Mt + 0 >> 1 and (4.3) under 

the condition Ml 2 - (Z + 5) 1 >> 1. 

Equation (3.2) can be put into the form 

or, if we put $([) = 2 d(2n MI x (0, in the form 

1 

** 

This formula, easily verified by differentiation, is a special case 
of a very general one given by us in [ 3 1 and repeated in [ 4 1 , 

p. 696. 

The integral in Equation (3.3) obviously reduces simply to the Sum of 
integrals of the form (3.4) with constant multipfiers. 
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1 
z- 2M (2 ” z _ 5) e-2M(1-z’}~~~)d~- 
1 

T v- 2hl (2:z _ ,,e-2ML’-“}$(5)d: (4.6) 

On the right-hand side of Equation (4.4) the first term can be 
written as 

2Sti~4z*nhM (1 -z) 1 _ e -2Mz + ,---zM(+-t) _ ,-2M 

ShhM 1--~-2-2M 

that is, for very large M it is practically equal to unity over almost 
the entire interval (0 Q z < l), but vanishes at its ends. As for 6(z), 

it vanishes in the whole interval as M increases, because the integrands 
in each of the integrals appearing in it are significantly different 
from zero only within a region whose width is of the order O(MW1) in 
the vicinity of the point z. 

Thus, for example, at a point z sufficiently removed from the edges 

(0, 1) of the interval, where the function $(r) changes relatively little 
within a width of order O(M - '), we have the approximation 

1 

h-,, (t)cosht- 1 

3 dt 

0 
(4.8) 
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Hence it is evident that this integral has in any case the order 
O(M- ‘). However, the integral on the right is equal to zero, which is 
easily found using Equation (3.4). which gives 

co cc) 

SF 
n 

Ku (t) ef - 1 /K 1 
2t 

rlt =: - 1, 1 fi-,,(t)r-‘dl = 1 

or 
0 ,I 

m 

I K. (f)coiht - - 
2 

0 

From this it is evident that in regions where the function I+%([) 
changes sufficiently smoothly, the integral under consideration will 

have a very high degree of smallness. 

The remaining integrals appearing in 6(z) can be estimated in analo- 
gous fashion. 

‘lberefore in seeking an asymptotic solution we will in the first 

approximation disregard the value of 6(z). Similarly we neglect also the 

terms 

where account is taken of the fact that $(l - 6) = $,([). As for the 
second and third terms in curly brackets on the left Fppion (4.4). 
they must be retained, because although the factors e and e - 2M 1-z) 

appearing in them also decrease.extremely rapidly with distance from the 
end points z = 0 and z = 1 of the interval, they just bring about the 
vanishing of the left-hand side of Equation (4.4) at z = 0 and z = 1, as 
occurs in the right-hand side of the same equation with 6(z) neglected; 
and without them the right- and left-hand sides of the equation could 
not be equal to each other at the end points. 

Equation (4.5) now acquires (approximately) the form 

(4.:)) 

If the right-hand side of Equation (4.5) or (4.9) is known, then X(Z) 

can be found in quadratures, using the known solution of the singular 

integral equation of the form 

(4.10) 



where the 

We use 
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function w(t) is regarded as known [ 5,6 1 . 

henceforth the form of the solution of this equation given in 

16 I, namely 

Note. Substituting into (4.11) for ID(Z) the right-hand side of Equa- 
tion (4.5). we obtain a new (exact) form of the integral equation for 

the unknown function x(z), and substituting the right-hand side of Equa- 
tion (4.9) we obtain an approximate integral equation for X(z). 

In [ 6 I, Equation (4.11) is given in a rather different form, because 

the equation to be solved Is written in the form 

n 

\ 

II, (Y) dy 
; 1 x2 - y2 IP = cp (XL O<x<a (4.12) 

where a = const, p = const, 0 < p < 1. 

Formula (4.10) is obtained from the solution of Equation (4.12) given 
in [ 6 1 with p = l/2 and corresponding change of variables. 
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