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1. As was pointed out by Shercliff [1 ], if the external magnetic
field H® is uniform, and the velocity field and induced electric and
magnetic fields do not depend on the coordinate z measured along the
axis of the tube, there exists a solution of the equations of steady
motion of a conducting viscous incompressible fluid along a tube such
that

v=uvi, H=H"+ H,j, (1.1)

where

. . [ .
E=ﬁgradH,X12+—'~:—HXv, ,}=4—n-grad1:lz><lz (1.2)
Here E and j are the electric field and current demsity in the fluid,

o its conductivity and pg its magnetic permeability,

We choose the z-axis in the direction of the field H® Assuming that
~ 0p/dz = P = const, and supposing that external volume forces are
absent, we obtain for H, and v the following equations:

AH, 2 _ g (1.3)
Hep 0H, P e 2
A+ e = Ty (&= 5+ 5) (1.4)

Here n is the coefficient of viscosity of the fluid.
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Steady flow of a conducting fluid 1537

The boundary conditions for H_ on the walls (contour) S of the tube
(assuming them fixed) are written as:

on the nonconducting parts of the wall
0H,/08§=0 ons (1.5)

on the ideally conducting parts (where n is the normal to the wall)

0H,/0n =0 -on § (1.6)
To these is clearly added the condition
v=20 on & (1.7)

The case of nonconducting walls was considered in [1 ], and the case
of ideally conducting walls in [2 ]. In both cases the solution is re-
presented by trigonometric series obtained by use of the method of
particular solutions. It is possible in the same way to solve the prob-
lem of a rectangular tube whose walls perpendicular to the external
magnetic field are ideally conducting, and those parallel to it are non-
conducting*. It appears much more difficult to consider the question for
a tube with ideally conducting walls parallel to H® and nonconducting
ones perpendicular to H® Since an exact solution of this problem does
not, to the best of our knowledge, exist in the literature at the pre-
sent time, we give here some considerations related to finding such a
solution and its investigation. In particular, the problem is reduced to
an integral equation of the first kind, which is easily solved by
numerical means for.small and moderate values of the Hartmann number,
and admits of asymptotic investigation in the case when this number is
large.

* It should be noted that such a form of the solution appears to be
very disadvantageous in the case of large values of the Hartmann
number, because the convergence of the series deteriorates rapidly
as that number increases. The situation here is analogous to that
occurring in the theory of the diffractien of waves by a body of
finite dimensions, where the convergence of the series obtained by
the method of particular solutions rapidly deteriorates with increase
of the ratio of a characteristic dimension of the body to the wave-
length (for a cylinder, sphere, etc.). In the present case, as in
that of diffraction, one may attempt to find a practically useful
solution by summing the resulting badly convergent series, turning it
into a complex integral and then transforming this by one means or
another to obtain a new form of the solution that is useful even for
large values of the Hartmann number.



1538 G.A. Grinberg

2. We proceed to the solution of the stated problem. Choosing the x,
y-axes as shown in Fig. 1, setting OA = | = 2a,
and OB = d, and denoting by I the total current '
flowing in through the ideally conducting wall 8 ¢
0OA and flowing out through BC (per unit axial
length of the tube), we obtain the following

boundary conditions for the field Hz: 0 y. £
Fig, 1.
H,=2nl/c at 2=0, H,=—2nl/c at =1 (2.1)
O0H,/ 0y =0 at y=o0, O0H,/0y=0 at y=4d 2.2
Furthermore
le:o =0, v Ix:l = (), v |U:O =0, v !y:d = () (2.3)
Introducing the functions
e Lo _BH /5
n= (m Ho++ a)], = 1/n (2.4)
and setting
= L (py HW
o= (P1—=E) (2.5)
we obtain from (1.3) and (1.4) the equations
Au+27%§-= ) Av+27%= (2.6)
with the boundary conditions on the walls OB and AC
ul,,=—ea uwl_,=0e o _ =0 v _,=0 (2.7
For the combinations p= u+ v and ¢ = u — v we find
Ap + 2y dp /| oz =0, Ag — 2¢y0q / 0z = 0 (2.8)

Plhioe=—% 4ql,=—a pl,=0 g =0 (2.9)
We set finally
p=eYEa§,  g=eay (2.10)

and introduce the unknown stream function

dv I |
';9—3; =0 :f(} (x)r _6?1‘1,1:4 :fd (9:) oD (2'11)
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Then for S and t we obtain the equations

AS —*S8 =0, A—qt=0 (2.12)
with boundary conditions
\ —ya " as L vix—a
Slg=—0eTe, S| =wew, 57| =e®f(2)
%—i{u_d = €7 =) f, (x) (2.13)
at vt
Loy = —0ew,  t|_, —aee, 55;;;:0 = — e—vx—a) f, ()
2 o) (2.14
Y=

For the determination of the functions S and t under the boundary
conditions (2.13) and (2.14) one may use the Green’s function G(£, 7,
z, y) for the rectangular region under consideration, given by the
equation

2nG (&, m, =, y) = % 2 (Ko YV (@m— B + (yn — 0?1 +

M=—00 N=—00

+ Ky [tV (@n— 8 + (g — 02l — Ko [y V (@m — 8% + (g — )% —

— Ko [y V(e — B+ (g’ — W%} (2.15)
where K (z) is the Macdonald function, and*

Im=2ml + x, 2z =2ml—x (m=0, +1, +2,..)
Yn=2nd +y, Yy =2nd—y (n=0, 41, +2..).  (2.16)
and satisfying Equation (2.12) and boundary conditions of the form**

* We note that

’ . ’ ’

T_pn =%, %_(n.y— b= — (% 1), Y_,=—1U, s Yy — d = — (y,—d).

** It is easily obtained by the method of images from the basic solution
Ky(yR) of Equation (2.12), where R= [ (z - &2 + (y - m?] is the
distance from the fixed point (£, n) to the variable point (x, y).

We note that for small yl and yd Expression (2.15) for the function
G(f, 7, x, y} 1s advantageously transformed for practical use into
another form on which we will not dwell here.
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G(O’ ,13,2)30, G lv 1 Ty =Os ?‘g 305 ‘qg = 7
Wz, Y 4z y) Pl 7l s 0 (2.47)

By use of Green’s formula we obtain the following expressions:

H
S (z, y) =S{G(§, d, 2, y) f2(B) — G (&, 0, 7, 9) f, (E)} exE—ardE —
° d
- S{GZ' (m 2, y) e+ G0, m, 2, y) e} dny (2.18)

0

Consequently
p(x,y) = e¥&=a§ (z, y) =

1
=6 G d 29 fs(®) — G (5, 0,2, 9) £, @) e dE —

—Q

(Ge' (1,0, 7, 9) €702+ G’ (0, m, w, y) e~ dn

O LI B

g (z, y)=ec—0¢ (g, y) = (2.19)

i

= — S (G, d, 7, y) fa(8) — G (&, 0, 2, y) f, (§)} e~v&~— dE —

1]

—a\{G' ([, m, z, y) e - G (0, W, z, y) e} dy

€ 9 By

Thus
v(2,y) == (p—q) = (2.20)

4
— {10 & 29 fa(® — G 0, 2,9) fy (B) cosh y(e— &) di —

0
d 4

— u{sinh " {l — x)SGE' ({, n, z, y) dy — sinh TQSSGE' Om, z, y,) dq}
) 0 o

iz y) =5@+q= (2.21)

d d

]
~{(C @& d 2y f® — G50, 29) fo (B sion y(E—2)de—
—a {cosh 1(l—2) S G:' (1, m, z,y) dn + cosh Yx%GE' @, m, 2, y) d’l}

The last equation can be greatly simplified, because the integrals
with respect to 7 appearing in its right-hand side do not, as will
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appear immediately, depend upon y and d, and are thus functions only of
x. Consequently we obtain according to (2.15), for example

dn +

E} [g‘xlmfm

4 [eo]
Ge' (0, W, z, y) dn = - o
§a(ﬂxy)ﬂzn2 {om e

m==--00 Nz OO

Kx(ﬂ/w 2+ (U 1))

d

Ki(r Va2 4+ @,y — P ) 4 o ,

T d
d
KBt Ve, — n)*)
+ i d 2.22
§ me’2 + (y..—.n’ - n)z } ( )
Setting in the first integral on the right y, -7 =2nd+ y -9 =
and in the second y_,"-7 = -(2nd + y + 7) = ~ t and combining the re-

sulting integrals with respect to t, we find

© K OVad T O, ¢ K Vad T o, — )
Z [S : -————2 dn + % - V 3 2 d‘l’l] ==
R D Py, —m) 3 T4 (y_, —m)
5 TR, o§ BOVenTE Dy aebml o o)
Ve, it et Ve ite T |

== w00 2nd-+y—d 0O

Here we have used the known formula

OOKI (Va8 dt  me—lel
| O = (2:24)
valid for arbitrary real values of a z 0.

Substituting into (2.22) the result obtained and its analog corre-
sponding to the replacement of x_ by x,” in Equation (2.23), we arrive
at the relation

d

1 = z z, '
"0,m, 2, y)dn = + { LA B |
[} M=—00
— - ®m e"‘{lxmlmm’]’(l_a”) 9.95
= 2 Tenr = am il (2.25)
m=-—0
where it is taken into account that 2, =~ 2, = —(2ml + x). Analogously
we find
d

sinh 7l

SGE! (lx m &, ’!f) dn T — smh ‘Tx (2.26)‘
1]
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Substitution of the results obtained into (2.20) and (2.21) gives

i
v(z,y) = S{G € d 2, 9)/a(8) —G(§,0,2,9) fy (E)) cosh 1 (2 —E)dE -+

+ 20 sinhY@sinhY (I — )
sinh 7/

(2.27)

1
R’(xo ?/) =§{G(§,d, z, y)fd(g)_G(EyO,xy y)f()(”v)} sinh Y(g_" LU)dE—

0
Yt )

. (2.28)
The condition v{x, 0) = v{x, d) = 0 is now reduced to the form
i
(16 (€ d,2,0/0) — G (£,0,2,0) 1, (%) cosh v (z— &) dg =
0
_ inh Y (! — &)sinhy2
=~ — 2ot T L= (2.29)
]
(1G5 d, ) jo(®) — G (& 0,7,d) 1, () cosh v (z— ) d§ =
0
o 9ot (I — Z)sinhYz (2.30)

sinh 7!
From (2.15) it follows immediately that

G, d oz d =G(EO0,z0), GE, d 0 =G(E,0,z, d)

Therefore, subtracting (2.29) from (2.30), we obtain
1

@& 0,2,0)— G (& 0,2, d)} [/a®) + 1, (B) cosh 7 (s —E)dE = 0

Oz <) (2.31)
Thus it must be true that*

fa (8) = —/, (§) (2.32)

and Equations (2.29) and (2.30) are reduced to one, namely

!

S{G &, d,z,0)+ G, 0,z 00}/, (&) cosh 7(x — E)dE = 2otabT@dant (—2)

R ahrl o 2.33)

* Thig follows immediately from the symmetry character of the solution
being sought.
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This is an integral equation for the function f((£). If the function
fo(€) is determined from this equation, then from it by means of Equa-
tions (2.27), (2.28) and (2.32) u and v can be determined, that is, the
complete solution of the problem be found.

For this, Equations (2.27) and (2.28) acquire the form

4
u={16¢ 42,9 +6E 0,59/, ®stont (@ — ) dt —a2LL22 2.34)
0 (2.35)

l
sinhYTsinhy (I — )

2=—{1G (&, d 2, 9) + G 0, 2, y)Ifo (E)coshr (¢ — &) dE + 20" 22HT

(1]

If [9v/dy 1,_, = 0, only the terms outside the integrals remain in
the right-hand sides of Equations (2.34) and (2.35), and these equations
are the (known) exact solution of the one-dimensional problem for Equa-
tions (2.6) and (2.7), obtained under the assumption that the entire
process depends upon x and not upon y. In other words, these terms give
the exact solution of the problem of the corresponding flow of fluid not
in a tube of rectangular cross-section but between two parallel plates
of infinite extent in the direction of the y-axis.

We note also that for a = 0 the right-hand side of Equation (2.33)
vanishes, so that f,(£) = 0, and consequently u = v = 0 according to
(2.34) and (2.35). From Equation (2.4) it then follows that

4nP
H,= 3 (a—2) (2.36)
and from the condition a = 0 it follows that P/H°u= I/2ac, so that
2wl z -
H, =22l 2 (2.37)

Hence for the current density j we obtain the expression
. ¢ - I .
J =Egl‘ade X lz:—le (2'38)

that 1s, the current flows parallel to the y-axis, with its density con-
stant in the x-direction. Thus we have a static regime, the fluid being
at rest, so that the variation of pressure is balanced by the electro-
magnetic forces exerted on the current j by the field fI°,

From Equation (2.33) it is evident that

fo (§) = a® (§) (2.39)

where the function ®(£) does not depend upon a.

Equations of an analogous type are obtained, according to (2.34) and
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(2.35), for v and u. For B(£) we obtain the equation

!
({6 (2,0,2,0) + G (,d,2,0) ® @) cosh 1 (s — ) dg = 2L —2) (5 49)
0

From Expression (2.15) for G(£, », x, y) it is evident, in particu-
lar, that for yd > 1 the term G(£, d, x, 0) in the left-hand side of
Equation (2.40) is very small in comparison with G(£, 0, x, 0).

Since this term reflects the effect of finite dimension of the tube
section in the direction of the y-axis upon the distribution of the
function fy(£) = [dv/dy } ~ o along the wall y = 0, that is, the effect
upon this distribution of the wall at y = d, it follows from what has
been said that for yd >> 1 this influence can be neglected, and with
greater accuracy the greater is the parameter yd. For d = «, which cor-
responds to the case of a section in the form of a half-strip rather
than a rectangle, it disappears completely. Equation (2.40) then takes
the form

!
18(5.0,2,0) (&) cosh 7 (s —)dg = 2REWIL=n) (9 49

where ¢(£) is the corresponding solution and g(&, 0, x, 0) the Green’s
function for the half-strip, obtained from (2.15) by passing to the
limiting case d = o, and equal to

gE ML) =g S Kely Vign —EF +H— ")+

Ko(x View—EP+y+m?)—K, 0V (@n —8+ (y—n)) —
— K, (v V (@m —E2+ (¥ + 2 (2.42)

since in (2.15) all terms with n # 0 vanish.
Introducing the dimensionless variables z = x/1, { = £/l and setting
yl = M and 1 (zl) = ¢(z), we obtain finally*

1
Sg(zg, 0,12, 0) § (¢) cosh M (z — {) df = 28z (1= 5 43)

where

* fThere is clearly no danger of confusing this z = 2/l with the co-
ordinate z in the direction of the axis of the tube.
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QL 0,1,0) = S 1K, (M|2m+5—5) — Ky (M|2m—s—))] (2.4

M==—00

This is a one-parameter equation for the unknown function ¥{{), M
being the Hartmann number.

In what follows, certain consequences resulting from this equation
are considered.

3. For small and moderate values of M, Equation (2.43) can be solved
numerically, reducing it to a system of coupled linear equations, where
one must take account of the fact* that y{0) = (1) = 0. For large
values of its argument the function K,(u) is asymptotically equal to
e~ ¥ \(w/2u); consequently in the case of large values of M the series
(2.44) for the function g(l1¢, 0, lz, 0) converges very rapidly. For
sufficiently large M, Equation (2.44) may be limited to three terms,

namely (3.1)
g (12,0, 12,0) = — (Ko (M | 2 — L) — Ko Mz + D)1 — Ko [M 2 — 2 — )]}

according to which Equation (2.43) takes the following form:
1

L (KoM |z —L)—K,(M|z+ L) — K IM2—2z2—01}¥(f) X
n
° 2sinhM zsinh M (1 — 2)

X cosh M (z—0)df = oy

(3.2)

In numerical solution of this equation account must be taken of the
fact that its kernel becomes infinite at { = z. We divide the full
interval of integration (0, 1) into sufficiently small subintervals ({ i
¢; + 1) and take advantage of the approximate equality

Sit1
| £012,0,12,0) cosh M (z: — DY (D dL=¥ (L) X
%
Cita
x S 2(12,0,1z,0) cosh M|z —C|dL (3.3)
4]

where {.° is some average intermediate value of {, for example

* Because f,(£) = [dv/dy ], _, vanishes at { = 0 and £ = 1, the velo-
city v is equal to zero on these walls.
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§i° = 1/2(Ci + Ci+—1)‘ Here it is essential that the integral appearing
in this formula can be found as an indefinite one in terms of known
functions, if use is made of the formula*

Sei’KO (t) dt = te£! (K, (1) + K1 (8)] (3.4)

and taking into account Expression (3.1) for g(1{, 0, lz, 0) and the
fact that**

cosh M {(z — ) = % [eMz=0 4 g M)

4. We consider the asymptotic form of Equation (2.43) obtained for
M > oo, In so doing we proceed from the fact that for M - « over almost
all of the interval of integration the asymptotic equality is valid

, , 1 4/
Ky(M)z—%]) cosh M (z — &) =~ 5}/ ﬁ-ﬁ (4.1)
and analogously

[ —2MY for z>¢

(M (z +1)] cosh M (z — 1) Nzl/zM(zH TV gor o (4.2)

[ MUY gor 2
K,y (M (2—2—0)] cosh M (z —0) ~ ]/_M(—z_—_a{ RN

where (4.2) is valid under the condition M(z + ¢{) >> 1 and {4.3) under
the condition M| 2 - (z + {) | >> 1.

Equation (3.2) can be put into the form

] {IS b (@)L *e..wz]gw@_)ic_ _e_gMu_z)i v

2V 2aM WV =] Vite Vi—s—t
z 1

WC)e—w’: _ w _ ZsimbMzsishM (1—3) ¢ .
é Vz+‘: % V2—z—¢ CZC}— sinh M 5(“} (%.4)

or, if we put ¥({) = 2 V(27 M) x({), in the form

* This formula, easily verified by differentiation, is a special case
of a very general one given by us in [3 ] and repeated in[4 ],
p. 696,

** The integral in Equation (3.3) obviously reduces simply to the sum of
integrals of the form (3.4) with constant multipliers.



Steady flow of a conducting fluid 1547

1 ,
(O 2= — @ + R (4.5

0
Here

1

() =\ [ Ko (M |2 — L ool (s —0)— 5 )/ gy P @A —

-

(Ko (2 4 D1 ¢ — ) — 5V st eGP @t —

N o= SN

(Kot &+ 1ot c— 0 — TV marirge ™ P @ -

~N

_.{Ko [M(2—z—)Jeos M (z —§) — %]/zT(zi—z—H e—zM(1-z>}1p(§)d§_

v

N O

(K101 @z — et (s — ) — 5/ e OO (4.6)

R — —aleZigfg -un—n{ ¥ (£)dg 4.7
()= ey T e Vi—i—¢ w0
z 0

On the right-hand side of Equation (4.4) the first term can be
written as

2emhMzsishM (1 —2) _ 4 eT2M2 M) __ —2M
sinh M | — g 2M

that is, for very large M it is practically equal to unity over almost
the entire interval (0 < z < 1), but vanishes at its ends. As for &(z),
it vanishes in the whole interval as M increases, because the integrands
in each of the integrals appearing in it are significantly different
from zero only within a region whose width is of the order oM~ 1) in
the vicinity of the point z.

Thus, for example, at a point :; sufficiently removed from the edges
(0, 1) of the interval, where the function ¥({) changes relatively little

within a width of order O(M"l), we have the approximation
]

U Ko 12 —LDewstt (:—0) — 5 V oirie—p }v0ae=

0 » )OO -
29 (2 . ‘
=~ —lpw—g[ Ky (t)cosht— % "/’% :l di (4.8)
B )
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Hence it is evident that this integral has in any case the order
O(M"l). However, the integral on the right is equal to zero, which is
easily found using Equation (3.4), which gives

o0 N [¢0)
S B p 2
“Ao(t)ei l/z]mszl, SA(,(z)p Par =1
0 0

or

OSC [Ko (1)cosht — %'/;_t] dt =0
0

From this it is evident that in regions where the function ({)
changes sufficiently smoothly, the integral under comnsideration will
have a very high degree of smallness.

The remaining integrals appearing in &(z) can be estimated in analo-
gous fashion.

Therefore in seeking an asymptotic solution we will in the first
approximation disregard the value of 8(z). Similarly we neglect also the
terms

z . 1 . 2

1 z Vi—:—1 0 ]/21
where account is taken of the fact that (1 — {) = ¥({). As for the
second and third terms in curly brackets on the left in Equation (4.4).
they must be retained, because although the factors e —2Mz gpq ¢ — 2H(1-2)
appearing in them also decrease extremely rapidly with distance from the
end points z = 0 and z = 1 of the interval, they just bring about the
vanishing of the left-hand side of Equation (4.4) at z = 0 and z = 1, as
occurs in the right-hand side of the same equation with 8(z) neglected;
and without them the right- and léft-hand sides of the equation could
not be equal to each other at the end points.

(J\f

Equation (4.5) now acquires (approximately) the form

1 1 z

Yoy (Qdr 2eshMzsaeM (1—2) . “p@dE . _aaa—n | x(E)dE .

¥ ) sinh M Ty T e Y
If the right-hand side of Equation (4.5) or (4.9) is known, then x(z)

can be found in quadratures, using the known solution of the singular

integral equation of the form

&‘}‘@ I SR (2) Oz (4.10)
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where the function w(z) is regarded as known [5,6 ].

We use henceforth the form of the solution of this equation given in
[6], namely

(C __ z)1/4 dC ; cs1/4 (£ — G)]‘/4

1 1 d Vid azt d
%(2) = — ——7353 ——~S e -«S v (o) ds (4.11)

Note. Substituting into (4.11) for w(z) the right-hand side of Equa-
tion (4.5), we obtain a new (exact) form of the integral equation for
the unknown function y(z), and substituting the right-hand side of Equa-
tion (4.9) we obtain an approximate integral equation for x(z).

in[ 6], Equation (4.11) is given in a rather different form, because
the equation to be solved is written in the form

d
Ifi(z)yflp =@, 0<zr<a (4.12)

O IR

where a = const, p = const, 0< p< 1,

Formula (4.10) is obtained from the solution of Equation (4.12) given
in[ 6] with p= 1/2 and corresponding change of variables.
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